Open in app

Sign In

Write

Sign In

SmartLab AI
SmartLab AI

820 Followers

Home

About

Dec 28, 2022

Felhasználói élmény — UX és interakció mellékspecializáció a BME-n

Az Adattudomány és Mesterséges Intelligencia főspecializáció kiváló kiegészítője a BME VIK-en a UX és interakció mellékspecializáció. A mellékspecializáció a mesterséges intelligencia (AI) és a felhasználói élmény (UX) területén nyújt gyakorlat orientált képzést a hallgatóknak. A felhasználói élmény (User Experience, UX) megtervezése és megvalósítása magába foglalja egy termék létrehozásának és alkalmazásba…

Deep Learning

4 min read

Felhasználói élmény — UX és interakció mellékspecializáció a BME-n
Felhasználói élmény — UX és interakció mellékspecializáció a BME-n
Deep Learning

4 min read


Nov 10, 2022

Adattudomány és Mesterséges Intelligencia MSc főspecializáció a BME-n

“Elméleti és gyakorlati MI tudás az ipar igényeihez igazítva” — 2023 februártól a Méréstechnika és Információs Rendszerek Tanszék és Távközlési és Médiainformatikai Tanszék data science és machine learning szakértőivel közösen elindítjuk a BME VIK-en az Adattudomány és Mesterséges Intelligencia MSc főspecializációt. A specializációban az elméleti alapok és gyakorlati anyagok minél…

Masters Degree

5 min read

Adattudomány és Mesterséges Intelligencia MSc főspecializáció a BME-n
Adattudomány és Mesterséges Intelligencia MSc főspecializáció a BME-n
Masters Degree

5 min read


Apr 28, 2022

PIA project’s achievement at NeurIPS AIDO6

Author: Robert Moni, András Kalapos, András Béres, Bence Háromi, Dávid Bárdos, Tibor Áron Tóth, Bálint Gyires-Tóth In December 2021 our team competed with 5 different solutions at the 6th edition of the AI Driving Olympics (AIDO) which was part of the 35th conference on Neural Information Processing Systems (NeurIPS). …

Self Driving Cars

5 min read

PIA project’s achievement at NeurIPS AIDO6
PIA project’s achievement at NeurIPS AIDO6
Self Driving Cars

5 min read


Mar 3, 2021

Using Transfer Learning to solve the simulator-to-real problem in the Duckietown environment

Author: Zoltán Lőrincz Introduction Throughout the previous semesters, I used Imitation Learning to carry out lane following in the Duckietown¹ environment. The agents were trained in the Duckietown simulator using different Imitation Learning methods such as Behavioral Cloning², Dataset Aggregation³ (DAgger) and Generative Adversarial Imitation Learning⁴ (GAIL). …

Deep Learning

6 min read

Using Transfer Learning to solve the simulator-to-real problem in the Duckietown environment
Using Transfer Learning to solve the simulator-to-real problem in the Duckietown environment
Deep Learning

6 min read


Feb 26, 2021

PIA project’s perseverance

Author: Robert Moni Sorry for the clickbait, but no, we aren’t the engineers that put together the Perseverance Mars rover, although we do possess the right amount of perseverance to achieve our goals. This blog post attempts to provide a summary of our latest research achievements under the aegis of…

Deep Learning

5 min read

PIA project’s perseverance
PIA project’s perseverance
Deep Learning

5 min read


Feb 25, 2021

Deep Learning-based Semantic Segmentation in Simulation and Real-World for Autonomous Vehicles — part 2

Author: Zsombor Tóth Part 1 of this blog post can be found here. Introduction Deep Learning is one of the most important techniques of autonomous vehicles nowadays. There are many components of a self-driving vehicle that can be realized with the help of deep neural networks (e.g. car and pedestrian detection…

Neural Networks

4 min read

Deep Learning-based Semantic Segmentation in Simulation and Real-World for Autonomous Vehicles —…
Deep Learning-based Semantic Segmentation in Simulation and Real-World for Autonomous Vehicles —…
Neural Networks

4 min read


Feb 25, 2021

Apply semi-supervised learning for semantic segmentation

Author: Gábor Lant One of the key strength of deep learning is that it can work with a large amount of data to train machine learning models. These models can be trained to find the underlying structure of the data. On the other hand, this also means that data is…

Deep Learning

4 min read

Apply semi-supervised learning for semantic segmentation
Apply semi-supervised learning for semantic segmentation
Deep Learning

4 min read


Feb 25, 2021

Disjoint Datasets in Multi-task Learning with Deep Neural Networks for Autonomous Driving

Author: Tamás Illés Introduction In Machine Learning (ML), we typically care about optimizing for a particular metric, whether this is a score on a certain benchmark or a business Key Performance Indicator (KPI). In order to do this, we generally train a single model or an ensemble of models to perform…

Deep Learning

4 min read

Disjoint Datasets in Multi-task Learning with Deep Neural Networks for Autonomous Driving
Disjoint Datasets in Multi-task Learning with Deep Neural Networks for Autonomous Driving
Deep Learning

4 min read


Feb 25, 2021

Supervised and Unsupervised Representation Learning for Reinforcement Learning

Author: András Béres Introduction Recently the topic of self-driving cars has received great attention both from academia and the public. While Deep Learning can provide us tools for processing vast amounts of sensor data, Reinforcement Learning promises us the ability to take the right actions in complex interactive environments. …

Deep Learning

5 min read

Supervised and Unsupervised Representation Learning for Reinforcement Learning
Supervised and Unsupervised Representation Learning for Reinforcement Learning
Deep Learning

5 min read


Feb 25, 2021

Lane following in the Duckietown environment under extreme conditions

Author: Péter Almási I set the goal to create a method for controlling vehicles to perform autonomous lane following using deep reinforcement learning. The agent is trained in a simulated environment without any real-world data and is tested in the real world. …

Deep Learning

6 min read

Lane following in the Duckietown environment under extreme conditions
Lane following in the Duckietown environment under extreme conditions
Deep Learning

6 min read

SmartLab AI

SmartLab AI

820 Followers

Deep Learning and AI solutions from Budapest University of Technology and Economics. http://smartlab.tmit.bme.hu/

Following
  • Raimi Karim

    Raimi Karim

  • NVIDIA AI

    NVIDIA AI

  • TensorFlow

    TensorFlow

  • Andrej Karpathy

    Andrej Karpathy

See all (5)

Help

Status

Writers

Blog

Careers

Privacy

Terms

About

Text to speech

Teams